Math 1A: Calculus

Instructor: Alexander Paulin

Quiz 6: \$3.5-3.7

Your name:

Discussions 201, 203 // 2018-10-19

Problem 1 (0 points per incorrect answer, 2 points per correct answer, and 1 point per unanswered). Determine whether each of the following statements is **True (T)** or **False (F)**, by circling the appropriate choice. A statement counts as false if *any* part of it is false. (If you do not know the answer, you should skip rather than guess.) No justification is needed.

T / **F** Let $f(x) = \ln x$. Then its derivative is f'(x) = 1/x with domain $(-\infty, 0) \cup (0, \infty)$.

T / **F** The tangent line to the curve defined by the equation $y^3 = x^6$ at the point (0, 0) is given by y = 0.

T / **F** Let p(t) be the function recording the position of a particle moving along a line (e.g. the *y*-axis). Suppose that at time t_0 , both $p'(t_0)$ and $p''(t_0)$ exist and moreover $p'(t_0) \cdot p''(t_0) < 0$. Then the particle is slowing down at time t_0 .

Problem 2 (4 points, Stewart \$3.6 Ex. 44). Compute $\frac{dy}{dx}$:

$$y = x^{\cos(x)}$$
.

Solution: Logarithmic differentiation gives:

$$\ln y = \cos(x) \ln x$$

$$\frac{1}{y} \frac{dy}{dx} = -\sin(x) \ln x + \cos(x) \frac{1}{x}$$

$$\frac{dy}{dx} = \boxed{x^{\cos(x)} \left[\frac{\cos(x)}{x} - \sin(x) \ln x\right]}.$$

г	-	-	
Т			
н			

Problem 3 (3 + 2 = 5 points). Consider the curve defined by the equation

$$y^2 = 3x^2(x+1)$$

- (a) Find the equation of the tangent line to the curve at the point (2, -6).
- (b) Find (the numerical value of) $\frac{d^2 y}{dx^2}$ at the point (2, -6).

Solution:

(a) Implicit differentiation gives

$$2y\frac{dy}{dx} = 9x^2 + 6x$$

so at the point (2, -6) the slope of the tangent line is -4 (by solving the above). Hence point-slope form gives

$$y - (-6) = -4(x - 2)$$

 $y = -4x + 2.$

(b) Differentiating equation (0.1) again gives

$$2\left(\frac{dy}{dx}\right)^2 + 2y\frac{d^2y}{dx^2} = 18x + 6$$

and plugging in what we know at (2, -6) makes this into the equation

$$2(-4)^2 + 2(-6)\frac{d^2y}{dx^2} = 18(2) + 6$$

for which one solves $\frac{d^2 y}{dx^2} = -5/6$.

		-