Problem 1 (0 points per incorrect answer, 2 points per correct answer, and 1 point per unanswered). Determine whether each of the following statements is True (T) or False (F), by circling the appropriate choice. A statement counts as false if any part of it is false. (If you do not know the answer, you should skip rather than guess.) No justification is needed.

T / F Let $f(x)=\ln x$. Then its derivative is $f^{\prime}(x)=1 / x$ with domain $(-\infty, 0) \cup(0, \infty)$.

T / F The tangent line to the curve defined by the equation $y^{3}=x^{6}$ at the point $(0,0)$ is given by $y=0$.

T / F Let $p(t)$ be the function recording the position of a particle moving along a line (e.g. the y-axis). Suppose that at time t_{0}, both $p^{\prime}\left(t_{0}\right)$ and $p^{\prime \prime}\left(t_{0}\right)$ exist and moreover $p^{\prime}\left(t_{0}\right) \cdot p^{\prime \prime}\left(t_{0}\right)<0$. Then the particle is slowing down at time t_{0}.

Problem 2 (4 points, Stewart $\S 3.6$ Ex. 44). Compute $\frac{d y}{d x}$:

$$
y=x^{\cos (x)} .
$$

Solution: Logarithmic differentiation gives:

$$
\begin{aligned}
\ln y & =\cos (x) \ln x \\
\frac{1}{y} \frac{d y}{d x} & =-\sin (x) \ln x+\cos (x) \frac{1}{x} \\
\frac{d y}{d x} & =x^{\cos (x)}\left[\frac{\cos (x)}{x}-\sin (x) \ln x\right] .
\end{aligned}
$$

Problem 3 ($3+2=5$ points). Consider the curve defined by the equation

$$
y^{2}=3 x^{2}(x+1)
$$

(a) Find the equation of the tangent line to the curve at the point $(2,-6)$.
(b) Find (the numerical value of) $\frac{d^{2} y}{d x^{2}}$ at the point $(2,-6)$.

Solution:

(a) Implicit differentiation gives

$$
\begin{equation*}
2 y \frac{d y}{d x}=9 x^{2}+6 x \tag{0.1}
\end{equation*}
$$

so at the point $(2,-6)$ the slope of the tangent line is -4 (by solving the above). Hence point-slope form gives

$$
\begin{aligned}
y-(-6) & =-4(x-2) \\
y & =-4 x+2 .
\end{aligned}
$$

(b) Differentiating equation (0.1) again gives

$$
2\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d^{2} y}{d x^{2}}=18 x+6
$$

and plugging in what we know at $(2,-6)$ makes this into the equation

$$
2(-4)^{2}+2(-6) \frac{d^{2} y}{d x^{2}}=18(2)+6
$$

for which one solves $\frac{d^{2} y}{d x^{2}}=-5 / 6$.

